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Abstract

A plan view geometric model for simple, parallel, di�erential displacements is presented. As an analogue for models of
arcuate mountain belt formation we use the model to predict strain patterns produced by parallel displacement in front of a

rigid versus deformable indenter. A rigid indenter is simulated by an irregular quadrilateral displaced a constant amount along
its hinterland boundary. A deformable indenter is simulated by an irregular quadrilateral displaced along a hinterland boundary
that is allowed to rotate. Some simple test cases show that the deformable indenter model leads to a pattern of strain very
similar to that encountered in arcuate mountain belts. Short axes orientations are most deviated from the transport direction

along the lateral edges of the model with minimum displacement and shortening and vary across the central domain, mirroring
strain features with variable orientations from mountain belts such as fold trends and minor deformation features such as
horizontal stylolite peaks. The rigid indenter model also generates short axes deviated from the transport direction but showing

far less variation. Displacement±strain relationships from the Jura mountains (Switzerland and France) are quanti®ed based
upon a simpli®ed version of the ®nite displacement ®eld for the Jura fold±thrust belt of Philippe, Y. (1995) [``Rampes lateÂ rales
et zones de transfer dans le chaines plisseÂ es''. (Unpublished PhD thesis, UniversiteÂ de Savoie)]. We ®nd that the model short axis

orientation pattern is very similar over at least the eastern and central Jura to the stylolite patterns from the region whilst the
long axes closely match the fold axes trends. The model suggests that the Jura mountains could have formed as a result of a
progressive deformation with uniform transport in a general northwest direction. 7 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The form of arcuate fold and thrust belts has long

fascinated geologists (Argand, 1922; Carey, 1955; Ries

and Shackleton, 1976; Marshak, 1988; Ferrill and

Groshong, 1993). Intuitive interpretations of a curved

mountain belt suggest the need for radial movement of

material to produce the curved fold axis patterns we

witness (Argand, 1922; Carey, 1955). Radial displace-

ment of any form will immediately create a space pro-
blem for the material in the arc which will have to
`stretch' drastically to accommodate the movement
(Ferrill and Groshong, 1993). Restoring such a system
could lead to all material moving back to a single
pointÐa source-sink. Evidence for the large strike par-
allel extensions required by such a mechanism is lack-
ing. More careful consideration of the problem has led
to the conclusion that material constrained to move in
a uniform direction can create strongly curved fold
patterns (Ries and Shackleton, 1976; Ferrill and
Groshong, 1993). Such di�erential shear models have,
up until now, focused on distinguishing fold±thrust
belt curvature forming mechanisms. These studies par-
ticularly emphasised the importance of the pattern of
tangential elongation as the key parameter for dis-
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tinguishing between curve forming mechanisms (e.g.
transport parallel simple shear, radial thrusting, pure
bending, etc.). There has also been some confusion
over what are the possible arc geometries resulting
from di�erent variants of di�erential shear. Displace-
ment±strain relationships have sometimes been drawn
intuitively, and incorrectly. For instance, both Ries
and Shackleton (1976) and Marshak (1988) suggested
that uniformly shortened regions with boundaries that
are not orthogonal to transport direction would have
fold axes orthogonal to the transport direction. This is
shown (see Fig. 2, model 1) to be untrue. Often re-
lationships between displacement and strain are coun-
ter-intuitive, and only a mathematical derivation of the
strain pattern from the displacement ®eld is sure to
give correct results. This is an extension of the re-
lationship between displacement and strain of which
geologists have long been aware (Howard, 1968;
Means, 1976; Ramsay, 1976).

If we accept di�erential shear as a mechanism for
arc formation, two model classes can be distinguished
based on what happens not in the thrust belt itself, but
in the region indenting it. These follow from the work
of Hindle and Burkhard (1999) which clari®es the fun-
damental di�erences between many proposed arc for-
mation models. We only produce models of the
`Primary arc' type de®ned by Hindle and Burkhard
(1999) and give more precise numerical data on the
e�ects of deformation and its relationship to di�erent
displacement geometries. The aim is to try and identify
which model is the most plausible for forming arcs.
Therefore, we demonstrate the rationale of displace-
ment±strain models for very simple, geometric ana-
logues to arcuate fold and thrust belts and then
compare these models to a real example: the Jura arc,
part of the western alpine collisional system.

The Jura mountains are the latest (Middle Miocene
onward) and most external part of the northwestern
alpine deformation zone (Sommaruga, 1999). They are
a small (ca. 350 km long) arcuate (the trend of the
mountains varies by 908 along their length), fold and
thrust belt, varying in width from 0 km at the eastern
end to around 65 km in their central portion. They
have been interpreted as being both a thick-skinned
fold and thrust belt with various basement structures
thought to be involved in their evolution [e.g. wrench
faulting in the basement folding the cover above
(Pavoni, 1961), penetration of basement thrusts into
the cover (Aubert, 1945), crustal delamination due to a
shallow dipping basement thrust soling out in the crust
(Ziegler, 1982)] or a thin-skinned, allochthonous belt,
with the Mesozoic cover shortened above an evaporite
detachment regionally present within the Triassic
(Schardt, 1906; Schardt, 1908; Buxtorf, 1916; Bur-
khard, 1990; Sommaruga, 1995; Burkhard and Som-
maruga, 1998; Sommaruga, 1999). Most recently, these

ideas have been based on regional interpretation of
industry seismic lines across the Swiss Molasse Basin
and Jura which are now publicly available. When com-
bined with balancing arguments, the autochthonous,
thin-skinned interpretation for the Jura mountains is
the most reasonable. We base all our modelling on a
thin-skinned interpretation. The results of our model-
ling show that the fold axes trends and orientation of
horizontal stylolite peaks (regional strain markers for
the Jura) can be simulated by the long and short axes
produced by a model of di�erential shortening with
uniform transport direction.

2. A simple, geometric, displacement±strain model

2.1. Model characteristics

In order to show the e�ect of displacement of ma-
terial seen in plan view on the strain pattern within
that material we adopt a geometric approach. Mechan-
ical properties of rocks are considered isotropic and
homogeneous. A starting point for a model is a quad-
rilateral. This geometry was used before by Ferrill and
Groshong (1993) describing the parallel displacement
of material across the length of arcuate fold belts.

With suitable mathematical manipulation (see
Appendix A), we can use any quadrilateral form we

Fig. 1. A hypothetical fold and thrust belt illustrating the idea of a

displacement gradient. In the picture above, there are gradients in

the transport direction, which is considered to be unique, and also

along strike of the mountain belt, since there is a di�erential displa-

cement in this direction. The diagram makes a clear separation

between an indenter region undergoing passive transport but also

lightly deformed by shearing, pushing into a mountain belt which is

strongly di�erentially shortened along strike and which deforms by

thrusting and folding. Displacement drops to zero across the width

of the fold belt (shown by `pins') creating a displacement gradient

orthogonal in the X2 direction.
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wish. However, to create a parallel displacement ®eld,
the corners must move in a parallel direction. The
behaviour of an indenting region to an arcuate fold
and thrust belt is also of considerable interest in these
problems. The indenter and thrust belt are joined to
each other (see Fig. 1), and any movement of their
common boundary must also be present in the indent-
ing region. Consequently, if the common boundary

twists or rotates, this component of movement will be
present in the indenter too, and should be re¯ected in
the deformation pattern found there. If there is no
twist or rotation, but simply a constant translation of
the boundary, it is possible that the indenter will
behave as a rigid block and show very little defor-
mation. Burkhard (1990) discussed some of the di�er-
ent possible arc-indenter con®gurations in the context

Fig. 2. Illustrative models for deformation patterns generated by transport parallel simple shear. Two types of model are used, (a) shows a `rigid

indenter' and (b) shows a deformed indenter. Model results numbered 1±4 are presented which show graphical plots of both displacement vectors

and shortening axes (in their correct orientation) shown to scale and summarise the boundary conditions (a, b, g, o, D ) and the resulting maxi-

mum values of shortening and lengthening (s3 and s1) and maximum angle (y ) between s3 and the transport direction in smaller numbered boxes.

D. Hindle et al. / Journal of Structural Geology 22 (2000) 1285±1296 1287



of the Jura arc and identi®ed four models for the
indenter, all variants of deformed or undeformed
indenters. These broad categories provide useful
boundary conditions for the models. A rigid indenter
neatly translates into constant displacement of material
along the thrust belt/indenter limit, whilst a deform-
able indenter allows variable displacement along this
boundary. We apply the additional constraint of ma-
terial always moving parallel, and produce four il-
lustrative models, two with an `undeformed indenter',
two with a `deformed indenter'.

The rigid indenter models (Fig. 2a, and models 1
and 2) have deformed zone boundaries which are obli-
que to the transport direction of the rigid indenter.
The common indenter/deformed zone boundary moves
by a constant amount along its width (D1=D2). The
same movement distance is applied to every point in
the indenter, which undergoes a rigid body translation.
Within the deformed zone, the displacement decreases
smoothly to zero by the foreland edge of the deformed
zone, generating a displacement gradient in the direc-
tion of transport. The models vary by changing the in-
clinations of the foreland and indenter/fold belt
boundaries, producing homogeneous (a=b ) or in-
homogeneous (a$b ) deformation.

Such models were seen as analogous to arc forming
mechanisms by many authors (Carey, 1955; Ries and
Shackleton, 1976; Marshak, 1988). They are a direct
analogue to model B of Burkhard (1990), for the
Molasse±Jura system where a rigid Molasse Basin
pushes east±west, obliquely into the Jura mountains.

The deformable indenter models (Fig. 2b) have a
deformed region/indenter common boundary under-
going a rotation (angle o ), which also a�ects material
in the indenter region. The indenting region may have
a hinterland boundary undergoing a di�erent rotation
(g ). The indenter region is deformed as a result. The
`thrust belt' itself will be inhomogeneously deformed
as the model is set up with a ®xed foreland boundary
and a rotated boundary common with the indenter.
The two models presented have similar characteristics
to the transport parallel simple shear idea of Ferrill
and Groshong (1993).

2.2. Mathematical principle

The quantity known as the displacement gradient
is the key to the following models. Displacement
gradient refers to changes in the total displacement
of points between the original state and the
deformed state along a particular direction. Hence,
we could de®ne such a quantity along only one co-
ordinate axis, and have e�ectively a one-dimensional
quantity, or we could envisage it existing in all
directions in a plane, and have a fully two-dimen-

sional quantity, shown conceptually in Fig. 1. The
idea is thoroughly dealt with by Means (1976).

In our analysis of fold±thrust belt curvature for-
mation, we make a distinction between the indenter
zone and the fold±thrust belt itself (Fig. 1). The
two regions are joined and continuous but there is
a jump in the displacement gradient between them.
The displacement vectors in the thrust belt diminish
in magnitude in the transport direction, reaching
zero along the outer boundary of the thrust belt.
There is a consequential horizontal shortening (and
would be a vertical thickening) of the crust to ac-
commodate the di�erential movement, which occurs
through folding and faulting. The indenter under-
goes the full movement of the most translated part
of the fold±thrust belt, but all parts of the indenter
move (approximately) the same distance in the
transport direction at least, and hence the displace-
ment gradient and consequently deformation, is very
small.

A gradient orthogonal to the transport direction
may also develop, resulting in transport parallel di�er-
ential displacement (or what one may term di�erential
shear). As the fold±thrust belt is pinned (see Fig. 1)
along an arbitrary foreland boundary, all displacement
of material reaches zero along this line. If any point of
the indenter region moves further into the fold±thrust
belt than adjacent points, there is a di�erential short-
ening in the fold±thrust belt itself according to the
position in a direction orthogonal to material trans-
port vectors for the thrust belt. This can be seen in
Fig. 1, where displacement vectors have di�erent
lengths along this direction. The consequence of trans-
port parallel di�erential displacement is a transport
parallel, di�erential shear which produces a variable
strain pattern in the region. We note (see Fig. 1) that
in many thin-skinned mountain belts, horizontal move-
ment of material is often more than an order of mag-
nitude greater than vertical. In this paper we think
particularly of the Jura arc, where horizontal shorten-
ing of 25±30 km is likely whilst relief due to thrusting
is restricted to 1±2 km. Hence we can justify modelling
displacement and strain in the horizontal plane only
(i.e. in map view) and the problem reduces to two
dimensions.

The displacement gradient can be described by a co-
ordinate transformation matrix from which we derive
the ®nite-strain tensor for the region. In a simple
quadrilateral for instance, there is a relationship
between the displacement gradient matrix F, and the
components of the individual displacement vectors
a�ecting each of the quadrilateral corner points Pn

(n= 1±4) which is demonstrated fully in the Appendix
A. If we calculate this, we have a simple model for
plan view strain. We use a quadrilateral domain since
this evaluates a continuous function for strain across
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its domain, equivalent to `averaging' the displacement
®eld due to folding, faulting, etc.

3. Model results

We have used four general models, two for unde-
formed indenters, and two for deformed indenters.
They all have uniquely parallel material displacement
vectors (assumed to be parallel to the X2 axis of a gen-
eral, Cartesian co-ordinate system) and yet all have
short axes which are deviated from the transport direc-
tion. The degree of deviation varies according to the
boundary conditions used. However, any model with a
rotational boundary (indenter/fold belt common
boundary) generally shows the strongest variability of
orientation of short axes. In all models including those
with constant boundary displacements we ®nd di�eren-
tial displacements are generated along any line parallel
to the X1 axis and there are displacement gradients in
all directions in the model plane. This occurs in spite
of the uniquely parallel movement of material. The
general model characteristics and speci®c results are
laid out in Fig. 2.

3.1. Model 1

Model 1 involves constant displacement applied to a
region of uniform width which is oblique to transport
direction. It is a case previously considered by Sander-
son and Marchini (1984). He recognised that even
though shortening across a region is constant, if the
transport is oblique to the region and even if it has a
`symmetrical' geometry (parallelogram) a di�erential
displacement is generated. The result is a uniform di-
rected y (homogeneous deformation) di�ering from the
transport direction (158). The angle y will vary as a
function of both the obliquity of a region to transport
and the amount of shortening.

3.2. Model 2

In model 2, a rigid indenter pushes into a zone of
variable width and geometry, with both boundaries
inclined to the transport direction (a=ÿ5.78, b=5.78
measured from X1). The resulting deformation is sym-
metric about the median line of the deformed zone,
and is inhomogeneous. There are only tiny variations
in the angle y. The largest di�erence between the short
axis and the X2 axis is 3.28. In the direction of maxi-
mum stretch, there is hardly any lengthening
(s1=1.005 maximum). This small di�erence in orien-
tation of shortening axes re¯ects the very weak di�er-
ential displacement along strike in the model.

3.3. Model 3

In model 3, we represent a deformable indenter,
since the common indenter/deformed zone boundary
undergoes rotation. This is a composite model of an
arc and its indenter. The deformed zone is initially rec-
tangular in shape, the common indenter/deformed
zone boundary undergoing a zero displacement at its
left extremity, and a maximum displacement at its
right extremity (rotation, o=5.78). This produces an
inhomogeneous deformation in the deformed zone, as
there is no movement of the foreland boundary. To ac-
commodate the movement, the indenter behind the
deformed zone must also be sheared. In this case, both
a homogeneous simple shear and shortening is applied
to the indenter, which undergoes a small shortening
and an equal rotation (=simple shear) of its foreland
and hinterland boundaries. Deviations of shortening
axes from the X2 direction are far greater with this
con®guration. Maximum deviation occurs along the
left-hand (unshortened) edge, where the state of strain
is simple shear only. The remainder of the deformed
zone is increasingly shortened resulting in lower angu-
lar deviations. A surprising consequence of this model
is the 08 deviation of shortening axes along the upper
boundary where the state of strain is pure shear only.
This implies an instantaneous passage at some point
from y > 45±08. Assuming fold axes perpendicular to
the local direction of s3, the model would produce a
series of curved folds becoming progressively more
parallel to X1 in the positive X1 direction (similarly
along X2). There is also considerably more (up to 1.05)
extension in the direction of the long axis.

3.4. Model 4

Model 4 contains the following important features.
The deformed zone is shortened by a translational
component of the common indenter/deformed zone
boundary, in addition to a di�erential displacement of
this boundary along strike. The indenter region also
undergoes a di�erential shortening along strike. It is
sheared to accommodate the displacements in the
deformed zone, however, its hinterland boundary
rotates more than its foreland boundary, creating
di�erential shear (g=8.58). Moreover, a small shorten-
ing component is applied to the whole zone (less than
that applied to the deformed zone). Every point in the
indenter has an additional translation applied to it.
The translation is of the same amount as the ad-
ditional shortening applied to the deformed zone. The
indenter thus con®gured has a strain pattern with the
deviation of shortening axes from X2 decreasing in
both positive X1 and X2 senses. The result of ad-
ditional shortening in the fold-belt region of the model
is to reduce the deviation of shortening axes from the
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X2 direction (compare to results for model 3 for
instance).

4. Discussion

The model results demonstrate how di�erential
shear in a deformed region leads to strains which are
highly variable in both orientation (y ) and magnitude
(stretches, s1Ðmaximum extension and s2Ðmaximum
shortening). Di�erential shear is generated by both
uniform displacement of the lower boundary to an
irregularly shaped region or by rotation of a lower
boundary of a regular or irregular region. Rotations
cause large di�erential shear and consequently larger
maximum y and s1/s2. Any general, additional shorten-
ing across the region (D1 > 0), leads to a reduction in
maximum y (see di�erence between models 2 and 3).

The geometries shown are scale independent and
analogous to many geological situations. In arcuate

mountain belts, we may examine the relationship
between fold-axis orientations and other ®nite-strain
markers such as stylolites or calcite twins, and trans-
port direction of material in the region. We may
assume predicted y to be locally parallel to stylolite
teeth and at 908 to fold axes. The conclusion would be
that a con®guration such as model 2 would resemble
an arcuate mountain belt in many ways. However, this
is slightly unrealistic since in a mountain belt, at such
high strains, a large amount of displacement is taken
up by faulting.

Indeed, all the deformation accumulated by di�erent
mechanisms in a thin-skinned thrust belt can be
thought of as accommodating some regional scale
strain. The important thing to remember is the pro-
gressive nature of the deformation. Features such as
stylolites and possibly some heterogeneities provoking
early folding would begin forming in the very earliest
stages of deformation of a region (Fig. 3a) when total
strain is very low. This initial geometry of deformation
may still be similar to that seen at the end of the epi-
sode. Indeed, the total ®nite deformation for transport
parallel simple shear could be thought of as accumu-
lating by a succession of increments such as in
Fig. 3(a). Taking a similar rectangular domain as we
have used for our ®rst strain models, we apply a tiny
displacement to one of its corners (Fig. 3a) and simu-
late one such increment. We see that even the smallest
di�erential shear will give y> 458. If this is the defor-
mation geometry a�ecting an arcuate mountain belt,
we would expect early strain features such as stylolites
to form with orientations similar to predicted y. Some
early folding (and possibly faulting) could also be in-
itiated in the same orientation. Further deformation
(Fig. 3b) would be accommodated by faulting and
folding, and may occur by translation of discrete,
semi-rigid blocks. However, already formed folds and
stylolites would keep their early orientations, which
might be rotated passively if the di�erential shear con-
tinues.

Therefore, though the detailed processes governing
formation of strain features are complicated, the orien-
tations and patterns we ®nd should be related to the
geometry of deformation applied. Our modelling simu-
lates the average or total strain applied to a region
which may be accommodated by a number of mechan-
isms. Reches (1978) also suggested that groups of
faults act together to accommodate regional strains
and their orientation would have a clear relationship
to the regional scale strain ®eld that was developing.
Even for simple homogeneous strains, four di�erently
oriented fault planes would exist. Molnar (1983)
suggested an inverse process where earthquake magni-
tudes on di�erently oriented faults could be summed
to give an average regional strain. Both point to the
fact that faults (and folds and intergranular defor-

Fig. 3. Finite strain accumulates in small increments but the geome-

try of each increment may remain relatively constant over time.

Small deformation features form from the onset of deformation

whilst large-scale ones (faults and folds) form after many increments.

(a) shows a tiny increment of transport parallel di�erential shear.

The resulting fanning strain pattern has y > 458 along one lateral

edge of the model and y 1 08 along the opposite edge. Early strain

features like stylolites should exhibit this sort of strain pattern too.

(b) shows a larger amount of transport parallel di�erential shear,

which could be thought of as resulting from 200 increments of (a).

Deformation mechanisms change to accommodate the larger strain

(shown schematically). Once faulting has begun, most new defor-

mation will accumulate on faults, and the system will behave as a

series of di�erentially translated, semi-rigid blocks. However, earlier-

formed, low-deformation features would be present within these

blocks and may preserve their original orientations.
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mation) are allowing change of shape of a large region.
We argue that at the scale of a whole mountain belt,
an overall deformation geometry exists and this is the
key to the regional strain pattern we ®nd.

5. The Jura Arc example

Taking these arguments further requires a real
example. The Jura fold-and-thrust belt is an arcuate
region of more than 350 km lateral extent, lying north-
west of the northern alpine foreland basin (Swiss
Molasse). The belt is composed of thrust Mesozoic
strata detached from a Permo-Carboniferous `base-
ment' by Triassic evaporite layers. Lateral thickness
variations and pinch-outs of the Triassic `Muschelkalk'
and `Keuper' series are a major control on displace-
ment and shortening of the cover sequence over the
width of the chain and its arcuate form (Debrand Pas-
sard et al., 1984; Philippe, 1994). Following Sommar-
uga (1996), the mechanical behaviour of the Jura
strata can be broadly characterised as follows (see
Fig. 4): limestone-dominated lithologies are generally
strong and brittle; shale- and marl-dominated litholo-
gies are weaker and may be either plastic or brittle
according to associated temperature, ¯uid pressure and
relative amount and type of clay; evaporite-dominated
lithologies are weak, and generally plastic. Hence, the
lowermost, salt-gypsum-dominated Triassic units of
the Jura are mechanically by far the weakest, and
form the principal basal deÂ collement, whilst the Upper
Malm, a thick, limestone unit is by contrast very
strong and has deformed under a brittle regime across
much of the belt to produce the fold±thrust system we
see today. The Jura mountains contain remnants of
the Tertiary foreland basin Molasse sequence proving
that the foreland basin's foredeep unconformity

extended into the chain before it was formed. In the
alpine foreland basin, hinterland to the Jura, the same
Mesozoic layers dip below Molasse sediments up to 3
km thick at the alpine front. The entire wedge of
Molasse and Mesozoic material remains relatively
undeformed. Contractional deformation of the Meso-
zoic sequences in the Jura mountains develops from
the post-Middle Miocene (Serravallian), onwards (Bur-
khard and Sommaruga, 1998).

Previous models of curvature formation in the Jura
belt can be summarised according to two types of
approach used. The ®rst are based on two-dimen-
sional, plan view restorations of the Jura (or parts of
it). Hence, Laubscher (1961) originally formulated a
model involving rotation of the Molasse/Jura limit, by
78 in the eastern part of the Jura mountains, con-
strained by the variations in shortening estimated
along the strike of the belt from two-dimensional res-
toration. This model implies that the Jura mountains
are then indented by a Molasse region which would
also have been sheared. More recently, Philippe (1995)
produced the most complete two-dimensional restor-
ation of the Jura belt yet. The displacement ®eld he
derived relative to a pin line in the stable European
foreland to the Jura shows an explicit rotation of the
Jura/Molasse boundary, which could also mean that
the Molasse Basin is a deformed (sheared) indenter.
The second group of interpretations are based on static
models for stress patterns suggested by di�erent strain
features found in the present-day Jura belt. Laubscher
(1972) for instance, suggested a conceptually di�erent
model for curvature formation where the indenting
block was e�ectively the western Alps (Helvetic and
Prealpine nappes) pushing as a rigid block into the
Molasse and Jura (i.e. both are indented but only the
Jura shows signi®cant deformation). This interpret-
ation was chosen because the (instantaneous) stress
pattern generated by such a rigid block pushing into a
deformable hinterland would resemble a pattern of
stress trajectories related to the variable orientation of
the fold axes across the belt. Homberg et al. (1999)
have recently proposed a modi®ed indenter model in
which the Molasse Basin is the direct indenter to the
Jura arc; furthermore, Homberg proposes that this
indenter would have broadened over time. The broad-
ening is used as an explanation for two di�ering orien-
tations of stress axes determined from sets of Mio-
Pliocene fault slickenslides which pre- or post-date
folding in the Jura.

The di�erence between the two approaches is mani-
fest. The ®rst, by attempting to unravel the displace-
ments which produced the structures found in the Jura
will, if carried out correctly, restore the positions of
the Jura/Molasse boundary to its original position
before deformation. If this limit changes shape (e.g.
twists) between the undeformed and deformed states,

Fig. 4. Mechanical stratigraphy for the Jura mountains, adapted

from Sommaruga (1996). Thicknesses shown are correct for the cen-

tral Jura mountains, but vary across the chain as described in the

text. The main deÂ collement layer is illustrated by thrust arrows, and

the approximate relative strengths of the lithologies are shown

according to the shading of the units.
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Fig. 5. Modelling the Jura using four quadrilateral domains. (a) The displacement ®eld of Philippe (1995) is simpli®ed to four points on the

Jura/Molasse boundary, displaced di�erentially, in an identical direction. Jura/foreland boundary is ®xed relative to these points. Four quadrilat-

eral domains model the boundary conditions, and displacements (red vectors) are smoothly interpolated across them. Note that here, we pass

from a reference element (rectangular) to two di�erent deformed elements as outlined in the Appendix A. (b) Short axes calculated for the displa-

cement ®eld (red) compared to horizontal stylolites from the Jura (blue). (c) Long axes calculated for the displacement ®eld (red) compared to

fold axes from the Jura (blue).
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the Molasse Basin must also have been internally
deformed. The second approach attempts to ®nd a
model based upon analyses which are related to an in-
stantaneous state of stress. As such, they ignore the
large di�erential displacements along strike of the
mountain belt accumulating over time. The arguments
related to stress states are correct but do not take
account of the dynamic evolution of the system over
time.

We have adopted the results of Philippe (1995) and
modi®ed them slightly to model the total ®nite strain
for the displacement ®eld generated by two-dimen-
sional plan view restoration of the Jura belt. Our
model is simpli®ed because rather than allowing a
slight divergence of displacement vectors, we take only
the displacements of four points along the
Jura/Molasse boundary, and constrain them to be par-
allel (in an approximately northwest direction). We
then pin the Jura/foreland boundary. Finally, as we
model `total' ®nite strain by such a technique, i.e.
strain from displacement (in reality due to cumulative
faulting and folding), we interpolate the displacements
to decrease linearly to zero along the Jura/foreland
boundary, from the values given along the Jura/
Molasse boundary. These values are close to 30 km
shortening (maximum) along the central and western
Jura boundaries, but decline to zero at both the wes-
tern and eastern Jura culminations. We substitute a
continuous displacement function for what is in nature
discontinuous and calculate a cumulative ®nite strain
pattern for the Jura mountains, based on the sum of
all displacement during their history. We compare the
model strain data with observed strain features such as
folds and horizontal stylolite peaks. The four points of
known displacement are actually simulated by using
quadrilateral domains as in the illustrative models.

Our results give directional information for short
and long axes of the total ®nite strain ellipses predicted
across the Jura. A rigidly parallel displacement ®eld
(Fig. 5a) produces a fanning strain pattern (Fig. 5)
across a modelled Jura arc. Comparison with ®eld
data shows predicted short axes not fanning as
strongly as stylolite teeth (Fig. 5b), with angular devi-
ations of approximately 458 between measured and
calculated values at the eastern and western termin-
ations of the Jura. Predicted long axes orientations
(Fig. 5c) match those of Jura folds across most of the
eastern and central Jura with deviations of <108. Cal-
culated strain axes swing by 738 in orientation across
the model, which we may compare to the often-quoted
908 swing in orientation of the Jura structural grain
along strike.

There are probable mechanical reasons for the
di�erence in correspondence between the large, cumu-
lative ®nite strains and di�erent natural features. In
the case of the stylolites, as already discussed (Fig. 3a),

small deformations produce a widely fanning strain
pattern, and since deformation is small, this would
correspond closely to local principal stress trajectories.
We also notice two contrasting orientations of stylo-
lites in some places in the Jura. This has been inter-
preted as corresponding to two di�erent regional stress
®elds. Other kinematic indicators (e.g. fault slickenslide
analysis cf. Homberg et al. (1999)) also show these two
trends. Such instantaneous measures of stress (or tiny
strain) are not directly comparable to total ®nite
strains. The fanning pattern is present for both model
and natural data. However, deviations from transport
direction are always lower in the case of the model
where total shortening is large. The additional shorten-
ing component tends to pull strain axes closer into line
with transport direction. Fold axes by contrast are far
larger scale features and form over the course of the
total deformation history of the mountain belt. The
model is in very close correspondence with fold axes
trends, since we compare the model to a quantity more
representative of cumulative ®nite strain. This admit-
tedly only o�ers a qualitative explanation, and the pre-
cise mechanics of the processes involved are far more
complicated. Nevertheless, the likely overall geometry
of total ®nite displacement in the Jura even when con-
strained to be rigorously parallel everywhere, produces
the divergent pattern of strain we see in the Jura arc.
It may be invoked as a mechanism for generating the
arcuate geometry of the whole belt. There is no
requirement of divergent transport along strike or sec-
ondary bending.

6. Conclusions

1. Illustrative models of transport parallel shear have
shown any region inclined to transport direction
undergoing constant displacement of one boundary
will develop a fanning strain pattern, divergent from
the transport direction.

2. If a region's width varies along strike and its bound-
ary is moved a constant amount (even if the bound-
ary is orthogonal to the transport direction) the
shortening is consumed di�erentially along strike,
generating a di�erential shear and again giving a
fanning strain pattern, divergent from the transport
direction. However, the degree of divergence for
such a case is normally very small.

3. When a boundary of a region is displaced di�eren-
tially along strike, the resulting fanning strain pat-
tern is very clear, and shows strongest divergence
from the transport direction along the line for
which shortening in the model is a minimum. When
shortening is zero along one line in such a model,
the predicted strain axes along this line will diverge
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by at least 458 from transport direction.
4. In general, these models illustrate that di�erential,

parallel displacements of material in a region will
generate fanning strain patterns.

5. A model of the Jura arc, allowing only parallel dis-
placements and variable amounts of di�erential dis-
placement and shortening along strike produces a
fanning strain pattern across the width of the model
region.

6. The orientations of stylolite teeth measured in the
Jura (and also other kinematic indicators, e.g. fault
slickenslides) show a similar fanning pattern but a
stronger deviation from an assumed transport direc-
tion. Local angular di�erences of ca. 458 in orien-
tation are found. Discrepancies most probably stem
from modelling large, ®nite strains, and comparing
them to features probably developed at a much ear-
lier stage (lower strain) cf. point 3.

7. Fold axes trends, a measure of the `structural grain'
of the Jura arc, show a very close match to the
orientations of modelled, long axes of ®nite strain
ellipses (modelled variation along strike is 738,

change in trend of the Jura is ca. 908). We attribute
this to the fact that fold axes orientations develop over
the entire deformation history of the belt, and conse-
quently are closely related to the total calculated ®nite
strains.
8. We conclude that geometrically constrained models

of arcuate fold-and-thrust belt indentation give
valuable information about the evolution of the
indenter. Based on the evidence of several restor-
ations (Laubscher, 1961; Philippe, 1995), the
Molasse Basin has been deformed as it has a com-
mon boundary with the Jura arc, shown to have
been rotated. Moreover, applying the ®nite displace-
ments predicted by such a model generates a fan-
ning strain pattern. Models of indentation based on
stress patterns developing ahead of a rigid indenter
(Laubscher, 1972; Homberg et al., 1999), predict
fanning stress/strain patterns, but are instantaneous
solutions to a problem. They ignore the accumu-
lation of incremental strains over time and the
changes in geometry of the system that this
requires.
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Appendix A. Mathematical derivations

Fig. A1 shows the general set up for the model. We
see an initial rectangular element, Pn (n=1±4), dimen-
sions (L, W ) transformed onto a general quadrilateral,
P
0
n: The components of the vectors linking the two are

named individually. These transformations give:

P1 �
�
0
0

�
4P

0
1 �

�
B
A

�
,

P2 �
�
L
0

�
4P

0
2 �

�
L�D
C

�
,

P3 �
�
L
W

�
4P

0
3 �

�
L� F
W� E

�
,

P4 �
�
0
W

�
4P

0
4 �

�
H
W� G

�
: �A1�

We then derive four functions which individually
attribute a value of 1 to one point Pn and simul-
taneously zero to all others (shape functions)

f1 � �Lÿ x1��Wÿ x2� 1

LW

f2 � x1�Wÿ x2� 1

LW

f3 � x1x2
1

LW

f4 � �Lÿ x1�x2
1

LW
: �A2�

Now multiplying each function ¦n by each new co-
ordinate P

0
n yields an equation of the form

x �
X4
n�1

fnP
0
n, �A3�

Fig. A1. Deriving transformation constants. The components a±h

are shown positioned according to the equations derived in Appen-

dix A. All models begin from a reference element with dimensions L,

W as shown.

D. Hindle et al. / Journal of Structural Geology 22 (2000) 1285±12961294



Where x � � x1

x2
� is the transformed co-ordinates of a

point. The resulting displacement equations take a gen-
eral form

x1 � a11X1 � a12X2 � a13X1X2 � a14

x2 � a21X1 � a22X2 � a23X1X2 � a24: �A4�
We then di�erentiate with respect to X1, and X2 in
turn. This gives us the deformation gradient matrix

@xi

@Xj
�
�
a13X2 � a11 a13X1 � a12
a23X2 � a21 a23X1 � a22

�
� Fij: �A5�

The matrix can be used in the manner dx=F�dX,
thereby associating a vector at initial position X to
another vector at ®nal position x. This speci®cation
(sometimes called Lagrangian) refers to the unde-
formed con®guration. We ®nd it more relevant to
work in a deformed (Eulerian) con®guration, since
when making ®eld measurements, we work in
deformed material and ignore its initial position. We
therefore prefer a speci®cation dX=Fÿ1�dx, and
require the inverse of the tensor F. Various strain and
deformation tensors exist and are well presented by
(Malvern, 1969) (chapter 4). We use the Cauchy defor-
mation tensor Bÿ1: This gives the initial squared
length (dS 2) of an element dx identi®ed in the
deformed con®guration

Bÿ1 � �Fÿ1�t � Fÿ1: �A6�
So, we have the general displacement equation for

the rectangle onto any quadrilateral. If we wish to
take a general quadrilateral as the initial shape and
deform that, a solution is also possible. We work from
an initial rectangular elementÐa reference element.

Eqns (A4) govern the transformation of the rectangle
onto both any initial quadrilateral and any ®nal quad-
rilateral. Thus a co-ordinate point (s, t ) in the refer-
ence element (Fig. A2) is associated to a point (X, Y )
in the initial con®guration by application j1 and to a
point (x, y ) in the ®nal con®guration by application
j2: Both applications j1 and j2 are of the form of
Eqns (A4). A global application j can be imagined
which directly associates a point (X, Y ) to a point
(x, y ). It is equivalent to the composite function

j2

ÿ
jÿ11 �X,Y�

�
or j2 � j1: �A7�

It is also equivalent to associating either `end' of the
equations

j1�s,t� � �X,Y� and j2�s,t� � �x,y�: �A8�
By using (s, t ) this way, we can e�ect a co-ordinate

transformation of a known point in ALL co-ordinate
systems, without directly knowing jÿ11 : To calculate
deformations, we need to know Dj:

Dj � D
ÿ
j2 � jÿ11

� � Dj2 � D
ÿ
jÿ11

� � Dj2 � Djÿ11 :

�A9�
We need to ®nd Djÿ1:

Djÿ1 �
ÿ
Dj2 � Djÿ11

�ÿ1� Dj1 � Djÿ12 : �A10�
Then, like Eqns (A6)

Bÿ1 �
ÿ
Djÿ1

�t�Djÿ1

� ÿDjÿ12

�t�Djt
1 � Djt

1 � Djÿ12 : �A11�
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